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GENERALIZED PACKAGES FOR ANALYSIS OF
VARIANCE AND CATEGORICAL DATA

LoV

This paper groups (a) analysis of variance and (b) categorical
data problems into several classes and then describes general software
packages that can analyze all classes of problems that have been de-
fined. The strengths and weaknesses of a variety of software packages
are compared in terms of the classes of problems they can handle and
the ease with which they can be used. A method for analyzing unbalanced
split-plot designs with currently available software is described.

A

ANALYSIS OF VARIANCE

Unbalanced Designs

Psychologists doing field research often have unequal sample sizes
in different cells in analysis of variance designs. When unequal sample
sizes exist, the design is considered unbalanced. There are some statis-
tical complications associated with the least-squares analysis of unbal=-
anced designs, and appropriate software is more difficult to find.

Statistical complications with unbalanced designs include several
threats to validity of results. With balanced designs, the sums of
squares that go into the numerators of the F ratios for each term in
the model are independent. Independence does not exist in the term in
the denominator, since the common sums of squares for error in the de-
nominator are used to test a variety of terms in the model. With un-
balanced designs, however, the term in neither the numerator nor the
denominator of an F ratio is independent, which may create increased
problems of Type I error, particularly in the case where many F tests
are made on a large number of terms in an unbalanced design. With
split-plot analysis of variance designs (where one or more factors are
repeated-measures factors), F tests are approximate rather than exact,
particularly when unbalance exists. The expected mean square coeffi-
cient for a term in the numerator of an F ratio will not be exactly
the same as the coefficient for the same term in the denominator, in
unbalanced split-plot designs, and the difference becomes larger as
the unbalance becomes greater.

Another complication arises in the way the variance is partitioned
with unbalanced designs. The researcher has the option of partitioning
the variance in a variety of ways depending on his objectives. When
unbalance exists, confounding between different terms in the model also
exists. In other words, the expected mean squares for each term in the
model contain a variety of extraneous components. These extraneous
components include some or all of the expected mean square components
for terms that come after the term of interest in the model statement.
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The researcher's objective may be to construct F ratios that have the
same expected mean square components entering into the mean squares as
those found in the analogous balanced analysis of variance design--in
other words, to unconfound expected mean squares for all terms in the
model. In a fixed-effect factorial design, this would mean adjusting
each term for all the other terms in the model (by ordering each term
of interest last in the model statement). When this is done, the sums
of squares for all terms in the model, when added together, are always
less than the total sums of squares for the design. This approach in-
volves assigning only that portion of the variance that is unconfounded
to each term in the model and eliminating the confounded portion of the
variance.

The researcher may not wish to partition the variance so that the
expected mean squares are unconfounded by extraneous components. In-
stead, the researcher may wish to partition the variance in a hierarchi-
cal manner, so that the sums of squares for each term in the model, when
added, equal the total sums of squares. This type of partitioning is
done when the researcher is willing to assume for theoretical or prac-
tical reasons that some terms take precedence over others, e.g., main
effects over interactions. When these assumptions are made, the expected
mean squares for the terms that take precedence over others are still
confounded with extraneous expected mean square components. However,
making the assumption that some variables take precedence over others,
and then partitioning the variance in a hierarchical manner consistent
with these assumptions, is equivalent to taking that portion of the
variance which is confounded and assuming that the confounded variance
is due to the variable that takes precedence rather than to the varia-
bles that are confounded with it. This approach is a method of assign-
ing unconfounded variance to the appropriate terms in the model, and
then assigning that portion of the variance that is confound to one
term rather than to other terms that are confounded with it, by making
the assumption of precedence.

Multivariate Analysis of Variance

Psychologists doing field research face not only unbalanced de-
signs but also designs with multiple dependent variables. A univariate
analysis of variance is often computed for each of a large number of
dependent variables, which creates the problem of inflation of Type I
error. When multiple univariate F tests are made, some will be signifi-
cant by chance alone. A problem with interpreting results arises when
significance is found with univariate F tests at a level not much be-
yond what might be expected on the basis of chance.

Multivariate analysis of variance controls for this type of in-
flation of Type I error. Multivariate analysis of variance reduces
each subject's scores on each of the dependent variables to one number,
a number that is a simple linear combination of the subject's scores on
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each of the original dependent variables. Multivariate analysis of
variance consists of a search for the linear combination of dependent
variables that discriminates best between levels of an independent
variable in the sense of producing the largest possible univariate F
ratio (Harris, 1975). Significance for this largest possible F ratio
is determined by a critical value that is appropriate for it, one that
takes into account the extreme capitalization on chance that was made
in arriving at it. The original linear combination of dependent vari-
ables that discriminates best between levels of an independent variable
is the same as the primary discriminant function found with discrimi-
nant analysis.

Since multivariate test statistics are based on a linear combina-
tion of dependent variables, there is no necessary one-to-one relation-
ship between univariate F ratios and the multivariate test statistic.

In other words, it is possible to have significant univariate F ratios
but not to have significance with the multivariate test statistic, or
the reverse--with a significant multivariate test statistic and no sig-
nificant univariate F ratios. It is informative, however, if the re-
searcher finds significance with the univariate F ratios but not with
the multivariate test statistic. When this is the case, the researcher
can best interpret the significant univariate F ratios as due to chance,
i.e., the inflated Type I error that occurred when multiple F tests were
made.

The nonsignificant multivariate test statistic indicates that it
was not possible to find a linear combination of dependent variables
that could produce a significant univariate F. In many cases, psycholo-
gists may wish to run multivariate analyses of variance to find out
whether or not the significance that is found with multiple univariate
analyses is real, i.e., whether it is due to inflated Type I error.

Each univariate analysis of variance design has a multivariate
analogue. As mentioned previously, it is difficult to find appropri-
ate software that can handle unbalanced analysis of variance designs
and even more difficult for unbalanced multivariate analysis of vari-
ance designs. However, programs are available that can handle these
designs.

Random and Mixed Effects

As mentioned previously, analysis of variance designs can be clas-
sified as (a) balanced or unbalanced and (b) univariate or multivariate.
Other classifications of analysis of variance designs are also impor-
tant: (c) the classification of the design as a random, fixed, or
mixed model; and (d) the classification of the design as one with
repeated-measures factors or one without such factors.




In the random model, the levels of the independent variables are
randomly selected, and researcher wishes to generalize his results to
all levels of the independent variable within the population of interest.

In the fixed model, the levels selected exhaust the population of
interest, and the researcher wishes only to generalize to the selected
levels that have been fixed. In the mixed model, some independent vari-
ables are fixed effects, and some random effects.

The classification of a design as a random, fixed, or mixed model
affects the selection of the appropriate error term. With the random
or mixed model, the expected mean squares for some or all terms in the
model contain additional components that are not found in the fixed
model. The appropriate error term must also contain the appropriate
additional components in its expected mean square, to test the signifi-
cance of a term that contains these additional components. With the
random or mixed model it is sometimes necessary to construct error terms
that contain the appropriate expected mean squares, including the ap-
propriate additional components, by doing arithmetic on the mean squares
of selected terms in the model and then making a quasi-F test with the
constructed error term. It is also common to find that with random or
mixed models, error terms with appropriate expected mean squares exist
but contain too few degrees of freedom to make tests that are at all
powertul.,

Split-Plot Designs

The final classification of analyses of variance designs made here
is between designs that contain repeated-measures factors and those that
do not. Designs that have some factors with repeated measures and some
factors without repeated measures are often called split-plot designs.
In these designs, multiple measurements are made for the same subject
or unit of analysis. These designs create a factor for between subjects
(or units) differences, and the variance for this term is extracted
from the error variance used to test the repeated-measures terms. Ervov
variance is reduced in this manner, but so are the degrees of freedom
for the error term(s) that are used to test the repeated terms. These
models also require more restrictive assumptions of constant correlation
between responses at all levels of each repeated-measures factor.

Software Comparisons

Analysis of variance software packages can be compared in terms of
their generality--the extent to which they handle the categories of de-
signs that were described previously: (a) balanced, unbalanced; (b) uni-
variate, multivariate; (c¢) random, fixed; and (d) with or without re-
peated measures (split-plot or not).
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The Biomedical package (BMD) for the most part deals only with
balanced univariate analysis of variance designs (Dixon, 1973). The
program BMD12V can handle balanced, multivariate, or univariate analy-
ses of variance, including split-plot designs, for the fixed model only.
BMD12V can only handle balanced designs. A limited number of unbalanced,
univariate designs can be handled with other BMD programs. The programs
assume for the most part a fixed-effects model. The Statistical Package
for the Social Sciences (SPSS), release 06, has an analysis of variance
program that will handle balanced or unbalanced univariate, fixed, fac-
torial designs (Nie, Hull, Jenkins, Steinbrenner, & Bent, 1975). The
program cannot handle multivariate analyses, random or mixed models,
or split-plot designs.

The program has only three preestablished ways of partitioning the
variance: (a) the "classic" option, in which main effects are adjusted
for main effects only and interactions are adjusted for main effects
and interactions; (b) the "regression" option, in which each term is
adjusted for all other terms; and (c) the "hierarchical" option of ad-
justing each term only for the terms preceding it. With unbalanced
designs, the regression option produces mean squares that are uncon-
founded by eliminating the confounded variance in the manner described
previously. Unfortunately, there is a programing error with this option
in release 06, which means it cannot be used. A multivariate analysis
of variance program is planned for SPSS, release 07. The OSIRIS package
contains a multivariate analysis of variance program, MANOVA, which can
handle for the fixed model univariate or multivariate analyses of vari-
ance for balanced or unbalanced designs. This program cannot handle
split-plot designs.

The most general analysis of variance programs that the author is
aware of are (a) the MAD/RUMMAGE program (Bruce & Carter, 1974) and
(b) the MULTIVARIANCE program (Finn, 1974).l1 MAD is the original and
RUMMAGE is the updated version of the same generalized analysis of vari-
ance program. RUMMAGE is updated and improved on a continuing basis.
Both MAD/RUMMAGE and MULTIVARIANCE can analyze any crossed or nested
design, including split-plot designs, that are either balanced or un-
balanced, for either univariate or multivariate analyses. These are
the only programs that the author is aware of that can handle unbalanced

lThe MAD/RUMMAGE package is available from Dr. Gale Bryce, Department

of Statistics, 204 TMCB, Brigham Young University, Provo, Utah 84602,
phone (801) 374-1211, extension 4505. Implementation is on IBM 360/370
as well as several non-IBM systems. Army Research Institute, Presidio
of Monterey Field Unit, has a copy of MAD. The MULTIVARIANCE package
is available from International Educational Services, P.O. Box A3650,
Chicago, Illinois 60690, phone (312) 684-4920. Implementation is on
IBM 360/370, CDC 6000 series, UNIVAC 1108.
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split-plot designs. Both programs can do univariate and multivariate
covariance analysis as well.

Design Statements. Both the MAD/RUMMAGE and the MULTIVARIANCE
programs have their own strengths and weaknesses in particular areas,
but together provide a powerful package that can handle practically any
analysis of variance problem. The strengths and weaknesses of each pro-
gram can be compared., One strength of the MAD/RUMMAGE program is the
simplicity of the model statement that defines the analysis of variance
design. The user enters model statements in a form familiar to most
users, e.9.,

Y(IJ) = A(I) + B(J) + AB(1J) + E.

If the user is not familiar with entering model statements in this form,
he or she can quickly learn to write an analysis of variance model state-
ment for any design by learning a few simple rules. For example, crossed
and nesting relationships are indicated by the subscripts in parentheses.
A nested relationship exists when there are more subscripts in parenthe-
ses associated with a given term than there are letters associated with
that term. The "extra" subscripts define those terms that the term of
interest is nested within. The user can quickly decide which interac-
tions should be included and which ones should be excluded, when writing
the complete full-rank model for any design, by referring to the follow-
ing rule: Interactions between any two terms in the model should be in-
cluded, if the subscripts that are in parentheses for the two terms that
are being considered for interaction do not contain any subscripts that
are the same. Interactions do not enter the model if two terms contain
common subscripts in parentheses.

In contrast, the MULTIVARIANCE program requires the user to define
the analysis of variance model by entering design matrices. It is more
difficult to write correct design matrices, particularly with designs
that include nesting and high order interactions, and more difficult to
enter the multiple cards for these matrices into the program, than to
write a single model statement as required by MAD/RUMMAGE.

Expected Mean Squares. A second strength of the MAD/RUMMAGE pro-
gram is that it provides a matrix showing the expected mean squares for
each term in the model. This is particularly useful when analyzing ran-
dom or mixed model analysis of variance designs. 1In the balanced case,
the user can immediately identify the appropriate error terms and iden-
tify how to construct error terms if appropriate ones do not exist.
MULTIVARIANCE does not provide expected mean squares, so in this case
the user would need to calculate them himself to find the appropriate
error terms.




The expected mean square output from MAD/RUMMAGE helps the re-
searcher identify confounding in unbalanced analyses of variance de-
signs. The researcher's objective may be to arrive at unconfounded
sums of squares that have the same expected mean squares as those found
in an analogous balanced analysis of variance design. If the researcher
is not sure about the way in which the terms in the model are confounded
in an unbalanced design, the expected mean squares output from MAD/
RUMMAGE will give the information, and the researcher can then order
and reorder terms in the model to eliminate the confounding. In those
cases where the researcher partitions the variance hierarchically, the
expected mean squares output provides the researcher with information
about the nature of the assumptions being made. The researcher is as-
signing confounded variance to one term rather than to others by assump-
tion, and by identifying confounded terms, this assumption becomes ex-
plicit. The researcher can examine confounded terms tc see if it is
reasonable to assume that one confounded term takes precedence over the
others.

Expected mean squares are also useful in identifying the confound-
ing that occurs with incomplete block designs (i.e., designs in which
there are missing cells). When there are missing cells (no observations
in one or more cells), the resultant analysis requires the researcher to
assume that particular interactions are zero in order to (a) eliminate
confounding and (b) estimate parameters for all terms in the model.
These assumptions are similar to assuming that interactions are zero in
a Latin square design. The estimated mean squares output will tell the
researcher which interaction must be assumed to be zero in order to
eliminate confounding and make estimates for all terms. MULTIVARIANCE
will also identify confounded effects in the case of incomplete block
designs.

The expected mean square output may also identify confounding where
the researcher does not expect it. For example, adding covariates to a
balanced analysis of variance design will produce confounded expected
mean squares for terms in the model, and the researcher may wish to ad-
just for this confounding.

Unbalanced Split-Plots. Both MAD/RUMMAGE and MULTIVARIANCE are
the only programs known to the author that can handle unbalanced split-
plot designs. Unfortunately, a problem arises with both programs in
analyzing these designs: When the model statement for the analysis is
written in the customary manner, the core storage required by these de-
signs becomes extremely large, exceeding the capacity of nearly all
computer installations. Only designs based on very small sample sizes
can be processed in the customary manner. A procedure for getting
around the core space problem with the MAD/RUMMAGE program is given
later in this paper. Future updates of the RUMMAGE program will prob-
ably incorporate this procedure as an automatic part of the output for
split-plot designs. This would be desirable, since it is impractical
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to obtain multivariate tests for split-plot designs with large sample
sizes as the program is written now. MULTIVARIANCE provides a method

of getting around the core space problem by transforming the raw data,
calling for multivariate tests, and then picking up selected statistics
from the multivariate output. The details of this statistical procedure
have been described by Boek (1975). A second run is required to get the
correct means, since a transformation was made on the raw data in the
initial run. One problem with this procedure is that the output for

t..e split-plot designs obtained in this way is not labeled correctly.

A separate run can be made on another program like MAD/RUMMAGE or BMD

to correctly identify statistics in the MULTIVARIANCE output. MULTI-
VARIANCE 1is the only program that can currently perform multivariate
tests for unbalanced, split-plot designs that are based on large sample
slzes.

Data Management. The model statement for MAD/RUMMAGE is easy to
write. The control card command structure for RUMMAGE has been greatly
simplified from the original MAD version of the program. However, the
program (a) is poorly documented, (b) has rigid requirements for the
form that the input data must be in to be accepted by the program, and
(¢) has no missing data option. The independent variables must be num-
bered consecutively from one to the number of levels of the variable
and must be in sorted order. These requirements mean that the user with
a large data file must enter a program like SPSS to recode variables, if
necessary, and eliminate missing data, pass this data on a temporary
scratch file to a utility program that can sort the independent varia-
bles, and then pass this file to tue final job step where the analysis
is made by MAD/RUMMAGE. This can be accomplished in one run but is in-
convenient for the user. MULTIVARIANCE provides a user supplied sub-
routine for missing data, and concatenation with SPSS for data selection,
recoding, etc. MULTIVARIANCE provides a variety of options for inputting
the data into the program. In general, MULTIVARIANCE is considerably
more convenient than MAD/RUMMAGE for the user with large data files
making multiple analyses with the same or similar designs. The MAD/
RUMMAGE program provides useful information about confounding and about
hypothesis testing with random and mixed models.

Discriminant Analyses. MULTIVARIANCE provides a wider variety of
multivariate statistics than MAD/RUMMAGE including discriminant analyses
and canonical correlation. It is often useful to follow up significant
multivariate analyses of variance tests with discriminant analyses to
identify the particular dependent variables that were influenced most
by a given independent variable. MULTIVARIANCE can provide discriminant
analyses for any term in any multivariate analyses of variance design.
Discriminant analyses are not available with MAD/RUMMAGE. RUMMAGE will,
however, provide analyses of categorical data, as described in the Cate-
gorical Data section of this paper for log-linear models.
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A METHOD FOR ANALYSIS OF SPLIT-PLOTS

One of the chief limitations of the MAD/RUMMAGE Program, as it is
currently written, is its inability to process split-plot designs based
on a large sample size. Even moderately sized samples very quickly ex-
ceed the core limitations of most computer centers. This problem is
unique to split-plot designs. Other designs, like factorial designs,
can readily be processed even with very large sample sizes. A procedure
for getting around the core space problem with MAD/RUMMAGE is given in
this section of the paper.

The problem arises with split-plot designs because they have more
than one "error" term. These designs include one whole-plot error term
that is used to test the significance of between subjects or plots
(nonrepeated-measures) terms, and one or more split-plot error terms
that are used to test the significance of the repeated-measures or
split-plot term(s) and interactions with these term(s). The whole-plot
error term consists of a random subjects or plots term nested within
the between subjects or plots (nonrepeated) terms, while the split-plot
error term(s) consists of the interactions between each repeated-measures
(split-plot) term and the whole-plot error term. The model statement in
the current MAD/RUMMAGE program allows a person to include any number of
"error" terms in the model statement; however, only the last of these
error terms does not add to the core space required by the computer.
Each error term except the last one adds a dramatic amount to the re-
quired core space.

A method for analyzing these split-plot designs, suggested by
Hendrix (1975), involves dividing the problem between the MAD/RUMMAGE
program and another program that can handle balanced repeated-measures
designs. This approach has several disadvantages: (a) It requires
writing model statements that are unique to the dividing procedure;

(b) it requires a fair amount of hand calculation (subtraction); (c) it
requires two computer programs; ané (d) it cannot handle multivariate
analysis of variance.

Split-Plot Example

A different method for analyzing these split-plot designs, which
has some of the previous limitations but can be handled within the
MAD/RUMMAGE program alone, is shown below. The complete full-rank model
of a split-plot design can be written as follows for the MAD/RUMMAGE
program:

Y(IJKL) = T(I) + S(J) + TS(IJ) + C(IJK) + R(L) + TR(IL)

+ SR(JL) + TSR(IJL) + CR(IJKL) + E.




In this design, the terms T and S are between subjects or plots (non-
repeated) terms and R is the repeated-measures or split-plot term. As
the model is written above, C is the whole-plot error term and is used
to test the significance of the terms which precede it in the model

and CR is the split-plot error term. The term E, as written above,
contains no degrees of freedom and serves only to terminate the model.
The C and CR terms above require a great deal of core storage. The
MAD/RUMMAGE program is written so that the E term terminates the model
and also collects the sums of squares due to any terms that are deleted
from the complete full-rank model. This being the case, it is possible
to immediately delete the CR term from the model (as it is written above)
and let the sums of squares for this term be collected by the E term.
However, the C term will still make the problem exceed storage capacity
for all but the smallest samples. Both the C and the CR terms can be de-
leted from the model as follows:

Y(1JL)

T(I) + S(J) + TS(IJ3) + R(L) + TR(IL) + SR(JL)
(2)
+ TSR(IJL) + E.

In this case, the E term contains the sums of squares for both the C

and CR terms. The sums of squares, degrees of freedom, estimated means,
etc., for all other terms in the model besides E are correct. The prob-
lem now becomes one of separating the sums of squares for the C and CR
terms that are confounded within the E term.

A separate run can be made on MAD to obtain the correct sums of
squares for the C term, and then the correct sums of squares for the
CR term can be obtained by subtraction from the E term listed in (2)
above. To be specific, the individual responses or scores can be summed
across all levels of the repeated factor R, and these sums can be run
with a MAD/RUMMAGE model that includes the between-subjects or plots
(nonrepeated) terms, T and S, and excludes the repeated-measures term R:

Y(IJ) = T(I) + §(J) + TS(IT) + E. (3)

The sums of squares for the E term in (3) above are equivalent to the
sums of squares for the C (whole-plot error) term in (1), after the E
term in (3) has been divided by the number of levels of the repeated
factor R. The sums of squares for the whole-plot error (nonrepeated)
error term are thus obtained by dividing the E in (3) by the number of
levels of the repeated factor R, and the sums of squares for CR are ob-
tained by subtracting the whole-plot error term from the E in (2). The
number of degrees of freedom for the whole-plot error term as obtained
in (3) is correct, and the number of degrees of freedom for the CR term
is obtained by subtracting the number of degrees of freedom for the
whole-plot error term from the number of degrees of freedom given for
the E term in (2).
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General Split-Plot Procedure

The above approach can be generalized to any split-plot analysis
of variance design as follows:

1. Any split-plot design can be analyzed, but each design will
require as many separate runs with different model statements as there
are error terms in the model.

2. The first run should include all terms in the complete full-
rank model except for the error terms, which should be deleted. This
run will produce the correct sums of squares and degrees of freedom for
all terms included except for the E term, which will contain the sum of
the sums of squares and degrees of freedom for . all error terms in the
model.

3. The whole-plot error term can be obtained in a separate run by
summing individual scores across all levels of each repeated-measures
factor in the model. If there is more than one repeated-measures factor,
these scores should be summed over all levels of all of these factors.
These sums are then run on MAD/RUMMAGE using a model statement that in-
cludes the terms tested by the whole-plot error and excludes the terms
tested by the split-plot error(s). The sums of squares for the E term
of this model is divided by the sum of the number of levels of the
repeated-measures factor(s) in the model.

4. When there is more than one split-plot error term, one run
with a distinct model statement is required for each split-plot error
term in the model, except for the one that is entered last.

a. The first split-plot error term is obtained by summing
individual scores across all levels of the repeated-measures factor (s)
except for the repeated-measures factor that enters into the error term
being obtained. A hypothetical repeated measures factor B, for example,
should be tested by the B x subjects interaction, so in this case in-
dividual scores should be summed across all levels of repeated-measures
factors that happen to be in the model except for B. A run is than
made on the MAD/RUMMAGE with a model that includes all terms tested by
the whole-plot error and all terms tested by the B x subjects interac-
tion. All terms tested by all other split-plot error terms that are
in the model are excluded. All error terms except for the final E
should, of course, also be excluded from the model statement, so that
in this case the E collects the sums of squares for the whole-plot error
plus the B x subjects interaction. The sums of squares for the E term
resulting from this run should be divided by the sum of the levels of
repeated-measures factors that are in the model besides the B factor.
The correct sums of squares for the B x subjects interaction can be
obtained by subtracting the whole-plot error term from the E term ob-
tained in this run that has been divided by the number of levels of
repeated factors as given above.
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b.  The second split-plot ervor is obtained in the same manne
as the first, by (a) summing individual scores across levels of the re-
peated factors that do not enter into the error term of interest,

(b) analyzing these sums with a MAD/RUMMAGE model that includes the
terms tested by the whole-plot error as well as the terms tested by
the split-plot error of interest, (¢) dividing the resultant sums of
squares for the E term by the number of levels of repeated factors that
went into the initial sums, and (d) taking this result and subtracting
the whole=plot error from it.

c.  The final split-plot error term can be obtained by sub-
tracting each of the previously obtained ervor terms from the E term
that was obtained in the firat run. Degrees of freedom for this final
split-plot term should also be obtained by subtracting the deurees of
freedom for previously obtained ervror terms from the degrees of freedon
for the E term obtained in the first run. The E term from this fivst
run collected the sums of squares and degrees of freedom for all errom
terms.

Limitations

The preceding approach will only work when balance exists across
all levels of each of the repeated-measures factors. In other words,
there needs to be one observation per cell across all levels of each
repeated-measures factor. 1If missing data exist at one level of a re-
peated factor, the data for all levels of the repeated factor need to
be removed. However, the previous approach is appropriate when unbal-
ance (unegqual cell sizes) exists for the nonrepeated, between-subjects
factors.

A one-way repeated measures design cannot be divided into two runs
on the MAD/RUMMAGE program. The "whole-plot" erior cannot be obtained
with a separate run, since there is no term in the model tested by
"whole-plot" error. HRowever, the initial MAD/RUMMAGE run can be made,
deleting the random subjects factor that is used as a blocking factor.
The error term will then include the subjects X repeated-factor ervon
term plus the random subjects factor. The random subjects factor could
be calculated with a separate Fortran routine. However, one-way re-
peated measures designs can readily be handled with other programs in
the univariate case. Unfortunately, most other programs cannot handle
the multivariate case, and the core space problem may prohibit the mul-
tivariate case from being run with the MAD/RUMMAGE progvam.

The preceding approach is not practical for multivariate analysis
of variance with any split-plot design. With multivariate analysis of
variance there is a sums of squares and cross products matrix associated
with each term in the model. The test statistic in multivarviate analy-
sis of variance is the determinant of the ervor matrix divided by the
determinant of the sum of the error matrix plus the matrix for the tewm
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being tested. The determinants are in error when using the preceding
subtraction approach with multivariate analysis of variance, since the
determinant of the difference between matrices is not equal to the
difference between the determinants of two matrices. To obtain the
correct determinants, the matrix for the whole-plot error would have
to be subtracted from the matrices for the other terms in the model
and determinants calculated for these differences. Although the ap-
propriate matrices can be obtained from the MAD/RUMMAGE package, the
amount of calculation required to subtract matrices and calculate de-
terminants obviously exceeds what is practical to do by hand.

i
CATEGORICAL DATA |
|
|

Psychologists collect data that are generally measured on nominal
or ordinal scales. Results are often expressed in the form of frequency
tabulations in one-way, two-way, and multiway tables. Such data are
often analyzed with the traditional Pearson chi-square statistic as
applied repeatedly to different subsets of the total possible number of §
two-dimensional tables. Army researchers often have occasion to mea- ; /|
sure such nominal variables as race, sex, MOS, mission type (combat, ‘
support) , etc. Categorical data of this nature are frequently analyzed
by the repeated application of the Pearson chi-square statistic to all
possible combinations of two-way tables, using the SPSS Crosstabs pro-
cedure. Even ordinal data, including ordinal questionnaire responses, |
are often expressed in terms of the percentages of subjects who selected
particular responses, particularly since data presented in this way are
easily interpreted by nonresearchers in terms of the original scales.

However, it is often difficult, and in some cases impossible, for a
researcher to tést the hypotheses of interest in terms of two-way con-
tingency tables. In many cases the researcher runs multiple tests in
order to test hypotheses that have been stated in a fragmentary form.

The use of linear regression models for the analyses of multidimen=-
sional categorical tables has been described by Grizzle, Starmer, and
Koch (1969). This approach provides a comprehensive method for the
statistical analysis of qualitative data that is directly analogous in
scope and power to multiple regression and multivariate analysis of
variance as applied to quantitative data (Koch & Reinfurt, 1970). This
approach provides a better method for testing many hypotheses than the
repeated application of the Pearson chi-square. Applications of this
methodology are beginning to appear in the social science literature
(see Giles, Gatlin, & Cataldo, 1976). This least squares approach to
the analysis of categorical data has been programed and is available as
a Fortran program called GENCAT (Landis, Stanish, Freeman, & Koch, 1976).

2This program has been implemented at IBM 360/370 installations. It

will shortly be modified to be compatible with non-IBM machines. The
program is available from Dr. Richard Landis, Dept. of Biostatistics,
University of Michigan, Ann Arbor, Michigan 48109. Army Research In-
stitute, Presidio of Monterey Field Unit, has a copy of this program.
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Defining Categorical Data Models

Just as with analysis of variance, the type of analysis that is
made with categorical data depends on the specifications of the under-
lying model. The underlying model depends on the sampling plan of the
experiment. The first step in specifying the model for the analysis
is to distinguish between (a) the variables that measure the experi-
mental conditions or subgroups to which subjects belong and (b) the
variables that measure what subsequently happens to subjects. Aall pos-
sible combinationg of levels of the variables measuring experimental
conditions or subgroups define the “populations" or "factors," in the
design and the possible combinations of variables measuring what hap-
pens to subjects define the "responses." A table of proportions de=-
fined by the number of response combinations, by the number of popula-
tions, is entered into GENCAT.

Multidimensional contingency tables are entered into GENCAT accord-
ing to how the model has been defined in terms of populations and re-
sponses. Several general types of models can be identified:

1. No factor, multiresponse;

2. Unifactor, multiresponse;

3. Multifactor, uniresponse; and

4. Multifactor, multiresponse.

Only Models 1 and 2 can occur with two-way tables, and Models 1 through
3 for three-way tables; otherwise all models can occur.

Model 1. The guestions that are asked in the case of the no fac-
tor, multiresponse model are analogous to questions that would be asked
in repeated-measures analysis of variance designs where all the factors
(one or more) in the design are repeated-measureg factors. A problem
of interobserver agreement could also fit under Model 1. Since all ob-
servers rate the same person/situation, the ratings fit in the mold of
a repeated-measures analysis of variance design. However, in this case
hypotheses of interest would include not only tests of the differences
between proportions but also agreement hypotheses: Is agreement differ-
ent from that expected by chance alone?

Model 2. 1In the case of unifactor, multiresponse tables, the
questions asked are analogous to those asked with one-way multivariate
analysis of variance designs. In designs of this nature, the researcher
ig interested in the association among dependent or response variables
as well as the influence of the independent or factor variable on the
response variables. With one factor and a series of r response cate-
gories, questions asked include (a) the influence of the factor on the
marginal distribution of the response, and (b) the influence of the
factor on the joint distribution of the r response categories.

14




Model 3. In the case of multifactor, uniresponse tables, the de-
sign is directly analogous to factorial analysis of variance designs.
Here the researcher wishes to determine how the factors or independent
variables combine to produce the response or dependent variable. The
researcher can test for "main effects" for the factors and for "inter-
action effects," just as in analysis of variance, except in this case
the researcher is looking at differences between proportions instead
of means. An example of multifactor, uniresponse problems, may be in-
structive at this point. Table 1 presents a hypothetical factor by
response matrix of proportions in a form that could be entered into
GENCAT. Both columns of proportions are entered into the program, but
a transformation matrix is entered to eliminate the second column, be-
cause (a) we are only interested in comparing proportions who received
Article 15's, and (b) computations cannot be made when singularity i
exists (i.e., when the rows add up to 1.0). Singularity also exists {7
when a proportion in the table is zero. When a zero enters into the
table, the levels of the factors must either be collapsed to eliminate bt
the zero, or else the zero must be replaced by a small proportion to :
eliminate the singularity. The GENCAT output for Table 1 would include
one chi-square statistic testing significance for the main effect of i
Race, one for Rank, and one for the Race x Rank interaction. i

Table 1

Example of Multifactor, Uniresponse Problem

Proportion Proportion not
Race Rank receiving AR-15 receiving AR-15
Black Enlisted .30 .70
Black Officer .00 1.00
White Enlisted .20 .80
White Officer .02 .98

Note. Race and Rank define the factors or populations; the response
is defined by receiving or not receiving Article 15 punishment.

The GENCAT results can be briefly compared to traditional results.
Separate Pearson chi-square statistics could have been readily computed
: in Table 1 for the effects of Race and Rank, but not for the interaction
) between these factors. With the GENCAT approach, each term in the model
1 is adjusted for the other terms, in a manner analogous to least squares
analysis of variance or multiple regression--which would not have been
the case had two Pearson chi-square statistics been computed. Also,

1 15




e ————

when multiresponse models are entered, GENCAT automatically adjusts
for the correlation between the multiple responses. The adjustment is
made by defining the appropriate variables as “response" instead of
“factor" variables. Traditional texts have always noted that the ap-
propriate chi-square test statistic depended on whether the variables
were correlated or not (Ferguson, 1966). Fortunately, adjustment for
correlation can be made by the appropriate selection of the model for
GENCAT,

Model 4. Finally, multifactor, multiresponse models are analogous
to factorial, multivariate analysis of variance designs, or to split-
plot analyses of variance designs. In these designs, questions are
asked about relationships among the dependent or repeated-measures vari-
ables as well as the way factors combine to affect the responses.

An_Example--The ARI_Representation Index

Appropriate test statistics are derived by entering a sequence of
transformation design and contrast matrices into GENCAT. These matrices
operate on the vector of proportions in such a manner as to define the
specific contrasts of intervest. Linear, logarithmic (loge)., and expo-
nential transformations of the proportions arve possible, and these trans=-
formations affect the nature of the hypotheses that are tested. The
following ARl research example shows how tranaformations affect the
nature of the hypotheses that ave tested.

As one approach to identifying possible areas of institutional
discrimination in the Army, Nordlie, Thomas, and Sevilla (1975) con-
structed a Representation Indexd as a quantitive measure of how promo-
tions, punishments, education, etc., have been distributed among whites
and nonwhites. This Representation Index is numerically equivalent to
a simple linear transformation of the ratio of two proportions. 1In
other words, with this index we are camparing the ratio of the propor-
tion of blacks who receive a given action to the proportion of whites
who receive this action, and then transforming this quantity linearly
80 it will have an origin of smero. So far no statistical tests have
been made to test whether or not a given Representation Index is sig-
nificantly different from sero or whether the Representation Index forv
one group (e.g., blacks) is significantly different Yrom the one for
another group (e.g., Spanish). With Army-wide samples, these tests may
not always be relevant; however, tests of this nature are important

actual number

expected number % 100) %,

where actual number equals the number of minorities receiving a par-
ticular action, and expected number equals the expected proportion if
there is no association between the event and skin color, times the num-
ber of individuals receiving the particular action.

3
Representation Index = (
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when representation indexes are computed with smaller sample sizes, and
the researcher wants to know if chance variation is responsible for the
size of the indexes. A Pearson chi-square statistic could be computed
on the difference between proportions, but the Representation Index
measures a ratio rather than a difference. To test the significance

of the Representation Index (or the ratio) directly, a logarithmic
transformation is made on the two proportions, and then the test statis-
tic is computed on the difference between the logarithmically transformed
porportions, which is in fact a test of the ratio of the proportions.
Tests of significance for the Representation Index can readily be made
with GENCAT. These tests of significance can also be made using a cate-
gorical data feature of the RUMMAGE program.

As this example demonstrates, transformations affect the nature of
the hypothesis that is tested. Transformations are often made with
analysis of variance in an attempt to normalize the distribution of
scores. It should be noted that these transformations alter the nature
of the hypothesis that is tested as well as the nature of the distribu-
tion of scores.

Categorical Data Versus Analysis of Variance

There are several advantages to analyzing data using the GENCAT
rather than analysis of variance:

1. The GENCAT approach requires the researcher to make fewer
assumptions about the nature of the data.

2. Much of the data collected by psychologists is nominal or
ordinal, often not very reliable, and can best be represented
as categorical variables.

3. Results can be expressed as percentages and, as such, are
readily interpretable by the Army and other nonresearchers.

In many cases, however, results may not differ much from analogous
analysis of variance results. Also, the documentation for the program

is written by statisticians writing to an audience well versed in matrix
manipulations. The way in which transformation, design, and contrast
matrices are entered into GENCAT is not at all obvious to nonstatisticians
who have not worked with the program.

CONCLUSION

Each of the generalized programs mentioned previously--MAD/RUMMAGE,
MULTIVARIANCE, GENCAT--are large programs that took several man-years
to write (e.g., MAD has over 12,000 Fortran commands). Bugs have been
eliminated over several years' experience with the programs. Together
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these programs provide powerful tools for psychologists doing field
research. Psychologists often find themselves with (a) unequal sample
sizes in field experiments due to lack of control, (b) multiple depen-
dent variables as part of an evaluation research design, and (c) large
quantities of nominal or ordinal categorical data. The generalized
software packages described here can handle many of the analysis re-
quirements for the types of data listed above.
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